

SECURITY RESEARCHER · POST-QUANTUM CRYPTOGRAPHY · HOMOMORPHIC ENCRYPTION · HARDWARE DESIGN

53 William Street, Apt 1, Worcester, MA 01609, USA

□+1-347-682-9787 | warkindoroz@gmail.com | doroz.org | warkindoroz

Summary.

I am a Security Researcher with more than 12 years of experience. My research area includes **Fully Homomorphic Encryption**, **Post-Quantum Cryptography**, and **Hardware/Software Accelerators**. I am one of the **co-founders** of **QuantumSafe** which is a Post-Quantum Blockchain startup for securing blockchains against quantum computers. Prior to that, I worked as a researcher in implementation and acceleration of Fully Homomorphic Encryption Algorithms on FPGA and GPU platforms, and in secure computation of machine learning algorithms using homomorphic encryption. I have solid experience on hardware, software and multi-core designs of security protocols and applications over 12 years. I published numerous peer-reviewed academic papers in prestigious conferences and journals.

Experience

Worcester Polytechnic Institute

Worcester, MA

CONSULTANT / ASSISTANT TEACHING PROFESSOR

September 2018 - present

- Designing hardware accelerator for T-FHE bootstrapping algorithm (work in progress).
- Implementated side-channel fault attacks on most popular TLS libraries to recover ECDSA and RSA keys from a server as a client.
- Received NSF grant as a co-PI for Next-Gen Post-quantum Schemes (\$600K).
- Expert witness in patent infringement cases.
 - Perform forensic analysis on devices by capturing network traffic using Wireshark.
 - Forensic analysis of Bluetooth and Bluetooth LE traffic between devices using ubertooth.
- Constructed an Ethereum rig and performed a hardware/software analysis to increase performance of the hash calculations.
- Implemented SHA-256 for performance analysis of Bitcoin using Nvidia GPUs (Cuda-C).

QuantumSafe MA

CO-FOUNDER/RESEARCHER January 2019 - June 2021

- Worked with a research team to design efficient **post-quantum** cryptographic algorithms for blockchain applications.
- Developed prototypes for the cryptographic libraries.
- Win a spot at Alchemist Accelerator (startup accelerator program).
- Performed many fund raising, pitch and networking activities.

New Jersey Institute of Technology

Newark, NJ

RESEARCH SCIENTIST

June 2017 - August 2018

- Implemented machine learning algorithms (probit, logistic, negative binomial and poisson regression) using homomorphic encryption.
- · Developed a Server/Client model for computation of homomorphic encryption and implemented on C++ and Python (wrapper).

Ph.D. Research, Vernam Cybersecurity Lab (Prof. Berk Sunar)

Worcester, MA

RESEARCH ASSISTANT

Assistant Jan. 2012 - June. 2017

- Designed acceleration techniques for Fully Homomorphic Encryption Algorithms using GPUs and FPGAs.
- Implemented a lattice-based Attribute-Based Encryption (ABE) scheme using GPU.
- Designed and implemented million-bit and large polynomial multipliers using Fast Fourier Transform in hardware. The designs achieved 2-3
 orders of magnitude speedup compared to software implementations.
- Implemented many algorithms in FHE: homomorphic AES/PRINCE, homomorphic sort, blind search, and homomorphic autocomplete.
- Introduced a new mathematical hard problem based on the secret finite field isomorphism (FFI) which can be used for cryptographic scheme constructions. Also, construct a fully homomorphic public-key encryption scheme using FFI problem.

Intel Corp. Hudson, MA

INTERNSHIP

Intel CPUs

May. 2015 - July. 2015

• Designed a hardware architecture to accelerate compression algorithms. The architecture is developed as a co-processor to be used by the

Security Lab. (Prof. Erkay Savas)

Istanbul, Turkey

RESEARCH/TEACHING ASSISTANT

Sept. 2009 - Dec. 2011

- Implemented a paralellized Tate Pairing algorithm on an IBM processor Cell Blade using **SIMD**.
- Designed an FPGA cluster infrastructure that utilizes cryptanalytic attacks or accelerates cryptographic operations over TCP/IP protocols.

YARKIN DOROZ · CURRICULUM VITAE

Skills

Software Programming C/C++, C#, Assembly, Nvidia Cuda-C/C++, Java, Python, Matlab, Sage, Solidity

Software Tools Microsoft Visual Studio, Eclipse, Git, CCS, GNU GCC, GNU Make, GNU Debugger, Wireshark, OllyDbg

Hardware Programming Verilog, VHDL

Hardware Tools Xilinx Vivado Design Suite/Vitis, Synopsys Design Compiler

Education

Worcester Polytechnic Institute (WPI)

Worcester, USA

Ph.D. IN ELECTRICAL AND COMPUTER ENGINEERING

Jan. 2012 - June. 2017

Sabanci University (SU)

Istanbul, Turkey

M.S. IN COMPUTER SCIENCE AND ENGINEERING

Sept. 2009 - Dec. 2011

Sabanci University (SU)B.S. IN ELECTRONICS ENGINEERING

Istanbul, Turkey

Sept. 2004 - June. 2009

Publications

Google Scholar Citation: 845 H-Index: 16

Journals

- 1. <u>Y. Doröz</u>, J. Hoffstein, J. H. Silverman, B. Sunar, **MMSAT: A Scheme for Multimessage Multiuser Signature Aggregation.** *Eprint*, 2020.
- 2. Y. Doröz, B. Sunar, Flattening NTRU for Evaluation Key Free Homomorphic Encryption. Journal of Mathematical Cryptology, 2020.
- 3. W. Dai, Y. Doröz, Y. Polyakov, K. Rohloff, H. Sajjadpour, E. Savaş, B. Sunar, Implementation and Evaluation of a Lattice-Based Key Policy Attribute-Based Encryption Scheme. *Transactions on Information Forensics and Security*, 2017.
- 4. E. Öztürk, Y. Doröz, B. Sunar, E. Savaş, A Custom Accelerator for Homomorphic Encryption Applications. IEEE Tran. on Computers, 2016.
- 5. Y. Doröz, Y. Hu, B. Sunar, Homomorphic AES Evaluation Using the Modified LTV Scheme. Designs, Codes and Cryptography, 2015.
- 6. Y. Doröz, E. Öztürk, B. Sunar, Accelerating Fully Homomorphic Encryption in Hardware. IEEE Transactions on Computers, 2014.
- 7. <u>Y. Doröz</u>, E. Öztürk, B. Sunar, **A Million-bit Multiplier Architecture for Fully Homomorphic Encryption.** *Microprocessors and Microsystems: Embedded Hardware Design,* MICPRO 2014.

Conference

- 1. K. Mus, Y. Doröz, C. Tol, K. Rahman, B. Sunar, Jolt: Recovering TLS Signing Keys via Rowhammer Faults. (under review).
- 2. <u>Y. Doröz</u>, J. Hoffstein, J. H. Silverman, B. Sunar, Z. Zhang, **Fully Homomorphic Encryption from the Finite Field Isomorphism Problem.** *Public Key Cryptography*, 2018.
- 3. G. S. Çetin, W. Dai, W. Martin, Y. Doröz, B. Sunar, Blind Web Search: How far are we from privacy preserving search engine? *Eprint*, 2016.
- 4. G. S. Çetin, W. Dai, Y. Doröz, B. Sunar, Homomorphic Autocomplete. Eprint, 2016.
- 5. G. S. Çetin, Y. Doröz, B. Sunar, W. Martin, Arithmetic Using Word-wise Homomorphic Encryption. ArcticCrypt, 2016.
- 6. <u>Y. Doröz</u>, G. S. Çetin, B. Sunar, **On-the-fly Homomorphic Batching/Unbatching.** *Workshop on Applied Homomorphic Cryptography and Encrypted Computing*, 2016.
- 7. <u>Y. Doröz</u>, E. Öztürk, B. Sunar, E. Savaş, **Accelerating LTV Based Homomorphic Encryption in Reconfigurable Hardware.** *Cryptographic Hardware and Embedded Systems*, 2015.
- 8. G. S. Çetin, Y. Doröz, B. Sunar, E. Savaş, Depth Optimized Efficient Homomorphic Sorting. Latincrypt, 2015.
- 9. W. Dai, Y. Doröz, B. Sunar, Accelerating SWHE based PIRs using GPUs. Applied Homomorphic Cryptography & Encrypted Computing, 2015.
- 10. <u>Y. Doröz</u>, A. Shahverdi, T. Eisenbarth, B. Sunar, **Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince.** *Workshop on Applied Homomorphic Cryptography and Encrypted Computing*, 2014.
- 11. <u>Y. Doröz</u>, B. Sunar, G. Hammouri, **Bandwidth Efficient PIR from NTRU.** *Workshop on Applied Homomorphic Crypt.* & Enc. Computing, 2014.
- 12. W. Dai, Y. Doröz, B. Sunar, Accelerating NTRU based Homomorphic Encryption using GPUs. IEEE High Perf. Extreme Computing, 2014.
- 13. C. Moore, Máire O'Neil, E. O'Sullivan, Y. Doröz, B. Sunar, **Practical homomorphic encryption: A survey.** *IEEE International Symposium on Circuits and Systems*, 2014.
- 14. <u>Y. Doröz</u>, E. Öztürk, B. Sunar, **Evaluating the Hardware Performance of a Million-bit Multiplier.** *Digital System Design, Euromicro*, 2013.
- 15. <u>Y. Doröz</u>, E. Savaş, **Constructing Cluster of Simple FPGA boards for Cryptologic Computations.** *International Symposium on Applied Reconfigurable*, 2012.

Presentations

International Workshop on Post-quantum Cryptography - IWPQC

Online

 ${\sf New\,Applications\,Based\,On\,PQ\text{-}Schemes}$

Dec. 2021 Saint-Malo, France

Cryptographic Hardware and Embedded Systems 2015

Accelerating LTV Based Homomorphic Encryption in Reconfigurable Hardware

Sept. 2015

Workshop on Applied Homomorphic Cryptography and Encrypted Computing 2014

Barbados

BANDWIDTH EFFICIENT PIR FROM NTRU

Euromicro 2013

March 2014

EVALUATING THE HARDWARE PERFORMANCE OF A MILLION-BIT MULTIPLIER

Santander, Spain Sept. 2013